Function of Thymosin Beta-4 in Ethanol-Induced Microglial Activation.
نویسندگان
چکیده
BACKGROUND/AIMS Neuroinflammation mediated by activated microglia may play a pivotal role in a variety of central nervous system (CNS) pathologic conditions, including ethanol-induced neurotoxicity. The purpose of this study was to investigate the function of Tβ4 in ethanol-induced microglia activation. METHODS Quantitative real-time PCR was conducted to assess the expression of Tβ4 and miR-339-5p. Western blot analysis was used to measure the expression of Tβ4, phosphorylated p38, ERK, JNK, Akt, and NF-x03BA;B p65. The concentration of TNF-α and IL-1β was determined using ELISA. NO concentration was measured using a nitric oxide colorimetric BioAssay Kit. Double immunofluorescence was performed to determine Tβ4 expression, in order to assess microglial activation in neonatal mouse FASD model. RESULTS Increased Tβ4 expression was observed in ethanol treated microglia. Knockdown of Tβ4 enhanced ethanol-induced inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and nitric oxide (NO) in BV-2 cells was performed. Exogenous Tβ4 treatment significantly inhibited expression and secretion of these inflammatory mediators. Tβ4 treatment attenuated p38, ERK MAPKs, and nuclear factor-kappa B (NF-x03BA;B) pathway activation, and enhanced miR-339-5p expression induced by ethanol exposure in microglia. A neonatal mouse fetal alcohol spectrum disorders (FASD) model showed that Tβ4 expression in the microglia of the hippocampus was markedly enhanced, while Tβ4 treatment effectively blocked the ethanol-induced increase in inflammatory mediators, to the level expressed in vehicle-treated control animals. CONCLUSION This study is the first to demonstrate the function of Tβ4 in ethanol-induced microglia activation, thus contributing to a more robust understanding of the role of Tβ4 treatment in CNS disease.
منابع مشابه
Thymosin-beta4 inhibits corneal epithelial cell apoptosis after ethanol exposure in vitro.
PURPOSE The purpose of this study was to determine the effect of thymosin beta 4 (Tbeta(4)) treatment on human corneal epithelial cells exposed to ethanol in vitro. The efficacy of Tbeta(4) in preventing mitochondrial disruption and in inhibiting caspase-mediated apoptosis was examined. METHODS Nontransformed human corneal epithelial cells (HCECs) at passage 4 were untreated or treated with e...
متن کاملHemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملThymosin {beta}(10) inhibits angiogenesis and tumor growth by interfering with Ras function.
Thymosin beta(10) is a monomeric actin sequestering protein that regulates actin dynamics. Previously, we and others have shown that thymosin beta(10) acts as an actin-mediated tumor suppressor. In this study, we show that thymosin beta(10) is not only a cytoskeletal regulator, but that it also acts as a potent inhibitor of angiogenesis and tumor growth by its interaction with Ras. We found tha...
متن کاملP 115: Potential Therapeutic Targets Related to Neuroinflammation in Treatment and Prevention of Autism
Autism spectrum disorder (ASD) is a mental condition, present from early childhood, characterized by great difficulty in communicating and forming relationships with others and using language. In the last four decades many studies have shown that immune responses in different regions of brain play an important role in ASD pathogenicity. A conservative estimate based on the research suggests tha...
متن کاملThymosin beta 4 treatment improves left ventricular function after myocardial infarction and is related to Up-regulation of chitinase 3-like-1 in mice
Background: Thymosin beta 4 is a promising agent in preclinical regenerative and cardioprotection research. After myocardial injury it improves cell survival, reduces inflammation and activates epicardial progenitor cells. The peptide is also involved in cardiac purinergic signaling. Methods: We investigated the peptide’s therapeutic potential in a mouse model for myocardial infarction and perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 38 6 شماره
صفحات -
تاریخ انتشار 2016